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Abstract

We give explicit polynomials in three real variables x, y and z such
that the zero sets have the shape of solid Möbius strips. The poly-
nomials depend on a further parameter which enables a deformation
from an embedded torus. We use only elementary methods such that
the proofs are also accessible to graduate math work groups for pupils
in secondary schools. The results can be easily visualized using the
free SURFER software of Oberwolfach.
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1 Introduction

The Möbius strip [1] is a well-known classical object in geometry and topol-
ogy which attracts not only professional mathematicians, but many people.
It can be obtained by glueing a strip of paper with a twist (i.e., a rotation
by π) of two parallel edges of the strip to be identified. If one rotates the
edges before glueing by kπ with k an odd integer, one obtains different em-
beddings Mk of the Möbius strip in 3-space R3. If k is even, the resulting
surface is a twisted cylinder surface. We call Mk a k-twisted Möbius strip.

As Mk is a non-orientable compact surface with boundary, it cannot be
represented as the inverse set f−1(a) of a smooth function f : R3 → R (or
more genereral (f, g) : R3 → R× [0, 1]) and a regular value a ∈ R of f [2].

Instead we will explicitly construct polynomials p(x, y, z) in three real
variables x, y and z such that the zero set p−1(0) has the shape of a solid
Möbius strip. Here, a solid Möbius strip Nk is defined as the boundary
of a small smooth tubular neighborhood of Mk. As Nk is a closed surface
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embedded in R3, Nk is framed and orientable by the generalized Jordan sep-
aration theorem [3], and it can be represented as the inverse set of a smooth
function with a regular value by the Pontrjagin-Thom Construction [4]. By
the Weierstrass approximation theorem [5], there exists also a polynomial
function representing a surface with the shape of Nk. But these theorems
prove only existance and do not help to construct explicit polynomials.

It is the purpose of this paper to construct such explicit polynomials by
elementary methods. Moreover, our polynomials will also depend on a real
parameter a such that a = 1 gives the standard torus embedding in R3 and
a 7→ 0 describes a deformation of the torus to Nk. We will achieve this using
a thin ellipse as cross-section because it looks similar as a transversal line
segment within the Möbius strip.

In the last section, we give some hints how to visualize the surfaces
by the free SURFER software of Oberwolfach which also allows real-time
deformation by changing some surface parameters. The pictures of this
article are all created with this software.

It is a pleasure for me to thank Gert-Martin Greuel and Andreas Matt for
introducing me to the SURFER and its fantastic visualization features which
I could explore with a graduate math work group for pupils (”Mathe-AG”) in
2008, as a cooperation of the Mathematisches Forschungsinstitut Oberwol-
fach (MFO) with the nearby secondary schools, Robert-Gerwig-Gymnasium
(Hausach) and Technisches Gymnasium (Wolfach). Moreover, I like to thank
also Oliver Labs and Thomas Markwig for organizing with me an advanced
training for schoolteachers on the subject of visualization of algebraic curves
and surfaces at the MFO in November 2008. The author’s construction of
the 1- and 2-twisted Möbius strip were presented at this training.

2 The k-twisted solid Möbius strip

We denote by d the distance of a point (x, y) ∈ R2 to the origin and by
φ ∈ [0, 2π[ its angle to the x-axis, i.e.

d2 = x2 + y2, x = d cos(φ) and y = d sin(φ).

We denote C := cos(φ) and S := sin(φ).
Now we consider a second coordinate system (t, z) ∈ R2 and an ellipse

E with center (1, 0) and length of the main radii given by
√
b and

√
a, i.e.

E is given by the equation

(t− 1)2

b
+
z2

a
= 1
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where we assume a and b to be positive real numbers. Multiplying this with
ab gives

a(t− 1)2 + bz2 = ab.

If we keep the center (1, 0) but rotate the ellipse by an angle ψ ∈ R, this
can be achieved by a coordinate rotation

(t− 1) 7→ c(t− 1) + sz z 7→ −s(t− 1) + cz,

where c := cos(ψ) and s := sin(ψ). The equation of the rotated ellipse Eψ
is then given by

a(c(t− 1) + sz)2 + b(−s(t− 1) + cz)2 = ab,

which is equivalent to

c2(a(t− 1)2 + bz2) + 2cs(a− b)(t− 1)z + s2(b(t− 1)2 + az2) = ab.

Now we consider the (t, z) coordinate system as rotating around the z-
axis, while the rotating t-axis spans the (x, y)-plane. At the same time the
t-axis rotates by an angle φ in the (x, y)-plane, we let rotate the ellipse Eψ
around (1, 0) in the (t, z)-plane by the angle

ψ =
k

2
φ.

This gives exactly the behaviour of k-times twisting a solid strip by the angle
π before glueing together the ends of the solid strip (which we are assuming
to have the shape of an ellipse). Then a semi-explicite parametrization of a
solid Möbius strip Nk is defined by the equation above for Eψ together with

t2 = x2 + y2, x = t cos(φ) and y = t sin(φ)

and ψ = k
2φ.

We note that we will obtain a closed smooth surface without self-intersection
if a and b are smaller than 1. Otherwise the ellipse Eψ can reach some nega-
tive coordinate values t (for suitable ψ) which can produce self-intersections
because of the rotation around the z-axes.

As a special case, we obtain the standard torus for a = b < 1, and in
this case k clearly does not play any role. Then the equations simplify to

t2 = x2 + y2 and (t− 1)2 + z2 = a.
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3 Solid Möbius strips by polynomial equations

We will construct an implicit polynomial representation p(x, y, z) by elimi-
nation of the variables φ (i.e., C and S), ψ (i.e., c and s) and t.

The elimination is very easy in the case of the standard torus as there is
no twisting. From the equation (t− 1)2 + z2 = a we get

t2 + z2 + 1− a = 2t.

Squaring this equation and insertion of t2 = x2 + y2 yields the torus poly-
nomial equation of degree 4:

(x2 + y2 + z2 + 1− a)2 = 4(x2 + y2).

For a ≥ 1 there are interesting self-intersections on the z-axes which can
also be visualized by the SURFER software (see the last section).

The next easiest example is not given by the ’classical’ (i.e., 1-twisted)
solid Möbius strip N1, but by the 2-twisted solid Möbius strip N2. In this
case, we have φ = ψ, showing that x = ct and y = st. Now we use the
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equation for Eψ, insert c = x
t and s = y

t , and multiply the equation with t2

in order to clear the denominators:

x2(a(t− 1)2 + bz2) + 2xy(a− b)(t− 1)z + y2(b(t− 1)2 + az2) = abt2.

As in the case of the standard torus, it is easy to get now an implicit poly-
nomial equation: First collect the terms with even powers of t on the left
side and the terms with the odd powers on the right side

(t2 + 1)(ax2 + by2) + z2(bx2 + ay2)− 2(a− b)xyz − abt2

= 2t(ax2 + by2 − xyz(a− b)),

then square this equation and insert t2 = x2+y2. This gives the polynomial
equation (N2) for the 2-twisted solid Möbius strip of degree 8:(

(x2 + y2 + 1)((ax2 + by2) + z2(bx2 + ay2)− 2(a+ b)xyz − ab(x2 + y2)
)2

= 4(x2 + y2)(ax2 + by2 − xyz(a+ b))2.

In order to obtain an analogeous polynomial equation for N1, we have
first to translate the relation ψ = 1

2φ to the trigonometrical coefficients
c = cos(ψ), s = sin(ψ) and C = cos(φ), S = sin(φ) by the formulas for the
double angle:

C = c2 − s2 and S = 2cs.

Because of c2 + s2 = 1 we obtain c2 = 1
2(1 + C) and s2 = 1

2(1 − C). We
insert this with C = x

t and S = y
t into the equation of Eψ and multiply with

2t in order to clear denominators:

(t+ x)(a(t− 1)2 + bz2) + 2y(a− b)(t− 1)z + (t− x)(b(t− 1)2 + az2) = ab.
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Again we collect the terms with even powers of t on the left side and odd
powers on the right side, where we factor out a ± b and t from the odd
powers:

(a− b)(x(t2 − z2 + 1)− 2yz)− (2a+ 2b+ ab)t2

= −t
(
(a+ b)(t2 + z2 + 1) + 2(a− b)(yz − x)

)
.

Then we square this equation and insert t2 = x2 + y2, which yields the
polynomial equation (N1) for the ’classical’ solid Möbius strip of
degree 6:(

(a− b)(x(x2 + y2 − z2 + 1)− 2yz)− (2a+ 2b+ ab)(x2 + y2)
)2

= (x2 + y2)
(
(a+ b)(x2 + y2 + z2 + 1) + 2(a− b)(yz − x)

)2
.

As a last example for Möbius strips, we consider the equation of the
3-twisted solid Möbius strip (N3) which for example appears in the logo
of the Mathematisches Forschungsinstitut Oberwolfach (see the web site
www.mfo.de):

Here, the relation ψ = 3
2φ gives with the formulas for the double angle

and for the triple angle the following relations:

C3 − 3CS2 = c2 − s2 and 3C2S − S3 = 2cs.
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Because of c2 + s2 = 1 we obtain c2 = 1
2(1 + C3 − 3CS2) and s2 = 1

2(1 −
C3 + 3CS2), hence

c2 =
t3 + x3 − 3xy2

2t3
, s2 =

t3 − x3 + 3xy2

2t3
and cs =

3x2y − y3

2t3
.

Inserting this into equation (Eψ) and multiplying with 2t3 in order to clear
denominators gives

(t3 + x3 − 3xy2)(a(t− 1)2 + bz2) + 2(3x2y − y3)(a− b)(t− 1)z

+(t3 − x3 + 3xy2)(b(t− 1)2 + az2) = 2abt3.

Separating even and odd powers yields

−2(a+ b)t4 + (a− b)((x3 − 3xy2)(t2 + 1− z2)− 2(3x2y − y3)z)

= −t
(
(a+ b)t2(t2 + 1 + z2)− 2(a− b)(x3 − 3xy2 − z(3x2y − y3))− 2abt2

)
and squaring and inserting t2 = x2 + y2 yields the polynomial equation
(N1) for the 3-twisted solid Möbius strip of degree 10:(
−2(a+b)(x2 +y2)2 +(a−b)((x3−3xy2)(x2 +y2 +1−z2)−2(3x2y−y3)z)

)2

= (x2 + y2)
(
(a+ b)(x2 + y2)(x2 + y2 + 1 + z2)−

−2(a− b)(x3 − 3xy2 − z(3x2y − y3))− 2ab(x2 + y2)
)2
.

It is clear how to proceed for the k-twisted solid Möbius strips for k ≥ 4.
Here we have to use the de Moivre’s formula [6] for the k-fold angle

cos(kφ) = Ck −
(
k

2

)
Ck−2S2 +

(
k

4

)
Ck−4S4 ∓ . . . =: ak(C, S),
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sin(kφ) = kCk−1S −
(
k

3

)
Ck−3S3 +

(
k

5

)
Ck−5S5 ∓ . . . =: bk(C, S).

If k is even, we have ψ = lφ with l := k
2 and this leads to

c =
al(x, y)
tl

s =
bl(x, y)
tl

.

If k is odd, we have 2ψ = kφ which yields

c2 =
tk + ak(x, y)

2tk
, s2 =

tk − ak(x, y)
2tk

and cs =
bk(x, y)

2tk

using similar arguments as before. Then we have to insert these expressions
into the ellipse equation, separate even and odd powers of t, square the
equation and insert t2 = x2 + y2 in order to eliminate t. This gives a
polynomial equation of order 2(k + 2) for the k-twisted solid Möbius strip.

4 Visualization by the SURFER software

All pictures were generated with the free SURFER software which can be
downloaded freely from the web site of the Mathematisches Forschungs-
institut Oberwolfach (see www.mfo.de and follow the link to the IMAGI-
NARY web site or directly http://www.imaginary2008.de/surfer.php).

Installation and working with the SURFER is straight forward. One
can just insert a polynomial in the three variables x, y and z and gets a
real time visualisation of the zero set, which in general is a surface with
some singularities and self-intersections. Using the cursor and a scroll bar,
the surface can be rotated in every direction and the visible sector can be
rescaled. It is also possible to coulor the surface with a large scale of available
coulors. Moreover, one can use two parameters a and b in the polynomial
which are fixed by two scroll bars and which allow real-time deformations
of the zero set surface. Short tutorials are available on the SURFER web
site, too. Because of its easy and intuitive use, SURFER can be strongly
recommended to graduate math work groups for pupils in secondary schools.
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In our case, the formulas contain the two variables a, b which control the
axes of the rotating ellipse. The scroll bar allows the fixing of values from
0 to 1. The parameter values a = 0 or b = 0 produce singular results and
lead to visualisation errors with the SURFER. Therefore it makes sense to
add a small offset to the parameter a, e.g. replace a by 0.01 + a. If one is
interested in self-intersections, one can also use larger parameters by 2a.

For the convenience of the reader, we have collected here some of the
formulas above in a format which is ready for input to the SURFER.

Torus (we have multiplied the parameter a by 2 in order to have self-
intersections also available):

(x∧2 + y∧2 + z∧2 + 1− 2 ∗ a)∧2− 4 ∗ (x∧2 + y∧2)

1-twisted Möbiusstrip:

((a−b)∗(x∗(x∧2+y∧2−z∧2+1)−2∗y∗z)−(2∗a+2∗b+a∗b)∗(x∧2+y∧2))∧2

−(x∧2 + y∧2) ∗ ((a+ b) ∗ (x∧2 + y∧2 + z∧2 + 1) + 2 ∗ (a− b) ∗ (y ∗ z− x))∧2
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2-twisted Möbiusstrip:

((x∧2 + y∧2 + 1) ∗ (a ∗ x∧2 + b ∗ y∧2) + z∧2 ∗ (b ∗ x∧2 + a ∗ y∧2)

−2 ∗ (a+ b) ∗ x ∗ y ∗ z − a ∗ b ∗ (x∧2 + y∧2))∧2

−4 ∗ (x∧2 + y∧2) ∗ (a ∗ x∧2 + b ∗ y∧2− x ∗ y ∗ z ∗ (a+ b))∧2

3-twisted Möbiusstrip:

(−2∗(a+b)∗(x∧2+y∧2)∧2+(a−b)∗((x∧3−3∗x∗y∧2)∗(x∧2+y∧2+1−z∧2)

−2 ∗ (3 ∗ x∧2 ∗ y − y∧3) ∗ z))∧2

−(x∧2 + y∧2) ∗ ((a+ b) ∗ (x∧2 + y∧2) ∗ (x∧2 + y∧2 + 1 + z∧2)

−2∗(a−b)∗(x∧3−3∗x∗y∧2−z∗(3∗x∧2∗y−y∧3))−2∗a∗b∗(x∧2+y∧2))∧2

Address: Stephan Klaus, Mathematisches Forschungsinstitut Oberwolfach,
Schwarzwaldstrasse 9-11, D-77709 Oberwolfach-Walke, Germany
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